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This paper investigates an energy-dependant finite rank approximation to the three-body 
amplitude at scattering energies both below and above the breakup threshold. The expansion 
method is one proposed by Adhikari and Sloan as an approximation method for solving few- 
body integral equations. Cubic spline functions are used to evaluate the expansion terms 
without contour rotation. Numerical results are obtained for a system of three identical 
bosons and the utility of this expansion method in a numerical treatment of the integral 
equations for four-body scattering is briefly discussed. Due to logarithmic singularities in the 
off-shell three-body amplitude at positive energies, no pointwise agreement is found between 
the separable expansion and the exact three-body amplitude at energies above the breakup 
threshold. 

I. INTRODUCTION 

In the work of Faddeev [l] and Yakubovskii [2]? among others 131, it has been 
shown that the few-body problem can be reduced to that of solving multidimensional 
integral equations. A further useful reduction of this problem can be achieved by 
introducing a separable expansion method [3] to the subsystem amplitudes. For 
example, approximating the two-particle amplitude by a sum of separable terms will, 
after a partial wave decomposition, reduce the Faddeev equations to a set of coupled 
integral equations in one continuous momentum variable. The utility of such a 
method is determined by the number of separable terms needed for an accurate 
solution to the resulting integral equations. 

A reduction of the three-body problem to a two-body Lippmann-Schwinger-type 
equation 141, brought about by the use of separable potentials, is now well 
understood. A similar reduction of the four-body problem by introducing a separable 
expansion to the three-body amplitude can be achieved in several ways. One 
approach is to apply the Hilbert-Schmidt method [5]. Another approach which uses 
an energy-dependent pole expansion has proved successful in the case of bound state 
calculations [6]. But as yet a practical application of this expansion approximation to 
four-body scattering has not been fully investigated [7]. A difficulty here is the 
singular behaviour of the three-body amplitude at positive energies [S]. In addition to 
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a non-smooth (cusp) behaviour, the off-energy-shell three-body amplitude contains 
logarithmic singularities. 

In the present paper we investigate an expansion method described by Adhikari 
and Sloan [9] and later used by Sofianos et al. [6] in their four-body bound state 
calculations. We place our emphasis on scattering problems and in particular the 
utility of the approximate three-body amplitude in the context of four-body scattering 
equations. While Sofianos et al. have demonstrated the success of their expansion 
method for the three-body bound states, the current paper is devoted to an 
investigation of this expansion method in the three-body scattering sector. 

A novel feature of our approach to constructing the Adhikari-Sloan expansion is 
that we evaluate the three-body solution along the real energy axis. A numerical 
treatment by Fonseca et al. [7] used the method of contour rotation. A difficulty with 
this technique is that prior knowledge is required of the analytic structure of the 
three-body amplitude in the complex momentum plane [lo]. For this reason we 
propose an alternative numerical technique in which cubic B-splines [ 1 l] are used to 
construct the expansion terms. 

Sections II and III give an overview of the three-body separable expansion. 
Section II gives a formal operator description of the equations and Section III 
describes the structure of these equations in momentum space. Section IV describes 
our numerical treatment of the separable expansion using spline functions. Finally, 
Section V gives our numerical results for a model calculation on the three-boson 
problem at energies both below and above the breakup threshold. The solution to the 
two-particle problem, which provided input to the three-body equations, is given in 
Appendix A. Appendix B describes the Galerkin method for solving an eigenvalue 
problem. 

II. THREE-BODY SEPARABLE EXPANSION 

This section gives a formal description of the separable expansion as applied to the 
three-body problem. In order to make this approximation explicit we shall consider 
the simple example of three identical bosons interacting via separable pairwise 
potentials. It will be assumed that the interaction can support a bound state in the 
two-particle subsystem. 

For our simple example the Faddeev equations reduce [3,4] to a two-body 
operator equation of the Lippmann-Schwinger type. After correct symmetrization for 
bosons (see (Lovelace [4]) this equation can be written 

T(z) = U(z) - U(z) D(z) T(z) (2. la) 

= U(z) - T(z) D(z) U(z), (2.lb) 

where z is a complex three-body energy. Each operator acts in a two-body space 
describing the motion of one particle relative to a bound state of the other two. The 
two-body operator T(z) yields a complete description of the three-body problem. 
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Since the Adhikari-Sloan expansion can be applied to equations of the general 
type given by Eq. (2.1), a discussion of the explicit kernel form of this equation, and 
in particular the complicated singularity structure of the functions U and D, is 
deferred to the next section. 

We now concentrate on the essential features of the Adhikari-Sloan expansion for 
Eq. (2.1). Our task is to construct a finite rank approximation to the operator T(z). 
This is most easily done if the effective potential operator U(z) can be approximated 
by a degenerate form. Let (/,(z) be the approximation to U(z) where [5 ] 

U,(z) = 2 b,(z) > n,,(z) < w,.(z”)l. (2.2) 
/A,E’=l 

It follows, by substituting U,(z) for U(z) in Eq. (2.1), that we can construcl an 
approximation T,(z) to T(z) such that 

(2.3) 

where the matrix HuI,(z) is given by 

(ff(z)F1)u,= (4z)nwL + oYJ&*) IWz)l Y,(z):~* (2.4) 

Next we consider the functions (v,;~ = l,..., m}. Let (f,;~ = l,..., m} be a smooth 
set of functions from which we construct 

I Y,(Z)) = W>l LA (2.5) 

In this way the functions (v/, ; p = l,..., m) have a built-in z-dependence of the exact 
effective potential operator U(z). Equation (2.5) is one choice of expansion functions 
proposed by Adhikari and Sloan. 

Returning now to Eq. (2.2), we choose the matrix n,,.(z) so that [9] 

(4z)-‘)us = (W,(Z”MLJ (2.6) 

With this choice, U,(z) has the property that it is exact when operating on any linear 
combination of the functions {f, ; p = l,..., m). This follows from the fact that 

~,(z> If,i = WLfJ (2.7) 

We now construct an analog to Eq. (2.7) for the operator T,(z). Using Eq. (2.1 b), 
we write 

where 

(ffW1),” = o&“) Ih,(z)h (2.9) 
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and the functions {h, ; p = I,..., m) are defined by the equation 

Ih,(z)) = [l + W) e)l If,>. (2.10) 

It follows from Eqs. (2.8) and (2.9) that T,Jz) satisfies the equality 

Tin(z) I 41w) = T(z) P,(z)). (2.11) 

It is an important feature of the approximation that T,(z) approaches T(z) in the 
above sense. 

This concludes our formal description of the Adhikari-Sloan expansion. It now 
remains to choose the functions {f, ; p = I,..., m }. Our choice is that used by Sofianos 
et al. [6] in four-body bound state calculations. This choice is known as the “energy- 
dependent pole expansion” (EDPE). 

In order to construct the EDPE let us consider the homogeneous equation 

--K(z) If@>) = w> D(z) I#(z>)- (2.12) 

In general there will be an infinite sequence of numbers (Kj(z)} and functions (#,j(z)} 
that satisfy this equation. The idea of the EDPE is to utilize a finite number m of the 
Sturmian functions {$,(z); p = l...., m) that satisfy Eq. (2.12) for the m largest eigen- 
values {K,(z); p = l,..., m). In particular, if the three-body system has a bound state 
with energy b, then we fix z = -b in Eq. (2.12), solve this equation for the functions 
(#,(-b);p = l,..., m}, and define 

If,> = W-b) I&,-b)). (2.13) 

It is assumed that the unit eigenvalue is contained in the sequence (K,(-6); 
,u = l,..., m). In this way the approximate operator T,(z) is forced to exhibit the 
correct pole behaviour at z = -b. The choice of functions {f,;~ = l,...? m) in 
Eq. (2.13) is simple to evaluate and does not depend on the energy parameter z. (For 
some other choices based on the use of Sturmians see Ref. [8].) 

III. MOMENTUM REPRESENTATION OF THE EXPANSION FUNCTIONS 

This section gives the explicit kernel form of Eq. (2.1) in a momentum represen- 
tation. We also provide a description of the expansion functions in momentum space. 
For simplicity we restrict our discussion to s-wave interactions and the total angular 
momentumj = 0 case. We set the particle mass M = 1. In general, the variable p will 
denote the magnitude of the momentum of one particle with respect to the remaining 
pair. We reserve k for the on-shell value of this momentum. Our normalizations are 
chosen so that the s-wave phase shift, d(k), is given by 

sin 6(k) 
T(k,k;E++-+?(k) k . 
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Here we have set z = E + i0 where E is the three-body scattering energy 

E = “k2 - E. 4 
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(3.2) 

and e is the two-particle bound state energy. 
The amplitude in Eq. (3.1) satisfies an integral equation 

T(P, P’; E + i0) = U(p, p’; E + i0) - 1 U(p,p’,; E + io) 
.a 

X D(p”; E + i0) T(p”, p’; E + i@) p:~? dp”, (3.3) 

This equation is derived from a partial wave decomposition of Eq. (2.1a). 
The effective potential U is defined by the integral 

(3.4) 

q1= (bpZ + p’2 + pp’Jy, 

42 = (p’ + ip” + pp’Jy, (3.5 ) 

and g(q) is some smooth two-body vertex function. The momentum dependence of g 
depends on the particular form of the two-particle interaction. For our model 
calculations we choose a Yamaguchi potential [ 121. The two-particle solution for this 
potential is described in Appendix A. 

The D-function also has its origin in the solution to the two-particle problem. In 
our notation the two-particle d-function, defined in Appendix A, is related to the D- 
function in Eq. (3.3) by a shift in the three-particle energy, i.e., 

D(p; E + i0) = d(E + i0 - J p*). (3.6) 

The evaluation of the integral in Eq. (A.6) is most conveniently done in two 
momentum regions; a region p E [0, &El where 

andy=\/E-ip2,andaregionpE[fl,co)where 

U(P;E+iO)=-~e2S~~!io. 

cc t-PI2 
s(5) = a(a + p) [ 1 + 2P/(c( + ;)I ’ 
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and 5 = dw. We mention that the D-function defined by Eq. (3.8) contains a 
Cauchy-type singularity (p’ - k* - iO)-‘. 

We now turn to the Adhikari-Sloan expansion for Eq. (3.3). From Eq. (2.3) the 
expansion approximation T, reads 

TAP: P’; z) = 5 v,(P; z) H,,(z) v,(P’; z), (3.10) 
c,v=1 

where 

(W--‘),, = joa w~(P; z)fv(l;l) P’ dp 

+ jco V’,(P; Z) D(P; z) w,(p; z) p* dp. 
‘0 

(3.11) 

The expansion functions {v, ; ,U = l,..., m) are given by the expression 

v,(p; z> = jom U( P, P’; 4 f,(p’) P’* dp’. (3.12) 

We see from Eq. (3.12) that I+Y, contains an explicit p and z dependence of the 
exact effective potential U. The integral in Eq. (3.4) has logarithmic singularities. As 
z approaches the real positive energy axis, z = E + i0, the position of these 
singularities is determined by the roots of the equation 

pZ+p’2fpp’-E=0. (3.13) 

Larson and Hetherington [ 131 have shown that these singularities pinch the p- 
variable integration contour along the real axis to produce a cusp in the three-body 
half-shell amplitude. It can be shown [ 141 that this cusp results from integration over 
the logarithmic singularities in the effective potential U(p, p’; E + i0) for E > 0. For 
this reason the same cusp behaviour found in the three-body half-shell amplitude is 
also found in Eq. (3.12) for v/,(p; E + i0) at p = m. We shall show later on in our 
numerical results that the separable expansion clearly exhibits this cusp behaviour. 

The smooth functions {f, ; iu = l,..., m} are obtained from solutions of Eq. (2.12). 
In its integral form this equation reads 

--K@(P) = joa VP? P’; -b) D(p’; -b) #(p’) pt2 dp’. (3.14) 

The EDPE choice is now given by 

f,(p) = D(P; -b) 4,(p), (3.15) 

where Q),(p) is a solution to Eq. (3.14). 
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IV. NUMERICAL TREATMENT OF THE SEPARABLE EXPANSION 

This section describes our numerical treatment of the separable expansion. Our 
method is based on the use of cubic splines. 

We begin by mapping the momentum variable p E [O, co) onto a finite interva! 
I-1, + 11. For this we use the transformation 

1 +x 
PCxl = ,1-y ? ( 1 x E [-1, +l]. 

d 

We partition the interval [- 1, + 1 ] by the knots -1 = xi < x2 < . .. < x, = + 1, with 
mesh spacing h, = max{ (xi+, - xi): 1 < i < n}. On this partition, together with the 
extended knots xPz Q ,Y- i < x0 < x, and x, < x, t , < x, + z < x, + 3 ) we use a 
procedure given by Cox [ 111 to construct cubic functions {B,,i: i = O...., n + I}. These 
functions provide a basis for the cubic B-splines. 

As an approximation to the solution of Eq. (3.14) we construct the cubic splice 
functions 

nt1 
hM4) = X ap,ihi(4. 

i=O 

(4.2) 

The expansion coefficients {u, ,i ; i = O,..., n + 1) are obtained by the Galerkin method 
[ 14, 151. A brief description of this method is outlined in Appendix B. 

Since the kernel in Eq. (3.14) is continuous, then from the general properties of 
cubic splines it is known [ 161 that in the L2norm the cubic spline approxirnation Jfi 
converges to 4, at a rate of O(k4,). 

We now turn our attention to calculating the functions (v, ; p= l,.... ml. Let @ be 
the approximation to w, given by Eq. (3.12), after using the spline approximation. We 
write 

where 

AdPi E + ioj = (xI U(p,p’; E + i0) D(p’; -b) B,,(x’(p’)) p’? dp’. (4.4.) 
d 0 

It now remains to construct the matrix H,,. On using the approximate functions of 
Eqs. (4.2) and (4.3) in Eq. (3.11) we obtain 

n+1 

(H(E + iO)-‘),, = r CZ,,~CZ&~~(E + iO), 
i.j=O 

(4.5) 
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where 

cij(E + jo> = fm A,&; E + i0) D(p; 4) BJx(p)) p2 dp 
'0 

+ i-” Anib; Isi- + io> D(p; E + i0) A,(& E + j0) $ dp. (4.6) 
“0 

We note that no ,U dependence is contained in the integrals of Eqs. (4.4) and (4.6). 
In the case when the function D contains a Cauchy principal value type singularity 
(see Eq. (3.8)) the integral is evaluated by the method of subtracting the singularity 

[171- 

V. RESULTS AND CONCLUSIONS 

This section describes our numerical results for the three-body separable 
expansion. We distinguish between two kinds of approximation: an approximation to 
the three-body amplitude by introducing a separable expansion, and second an 
approximation brought about by using numerical quadratures and splines described 
in the previous section. For the latter approximation we have found stable results by 
increasing the number of mesh points and knots. 

We recall from the statement following Eq. (2.11) that the operator T,(z) is exact 
when operating on any linear combination of the functions (h, ;,u = I,..., m}. This 
does not mean. however, that the expansion approximation T,,, will lead to a good 
pointwise agreement with the exact three-body amplitude. Indeed, the off-energy-shell 
three-body amplitude contains logarithmic singularities in both momentum variables 
p and p’ arising from the inhomogeneous term in Eq. (3.3), while the expansion 
approximation defined by Eq. (3.10) clearly does not contain these singularities. For 
our separable expansion this means that increasing the number of Sturmian expansion 
terms nt will not improve the pointwise agreement between T, and T. On the other 
hand, the removal of singularities from the three-body amplitude in the Adhikari- 
Sloan expansion is an obvious numerical simplification of the problem. 

In order to better understand this point we can consider the product integral 

F = j- u(s) u(s) ds. (5.1) 

Here u is a singular function and u is smooth. Given that u is an integrable function 
one can find another function u”# u which replacing u in Eq. (5.1) yields the same 
result, that is, 

1 (u(s) - C(s)) u(s) ds = 0. (5.2) 

In the Adhikari-Sloan expansion the analog of rj is the function T,. 
We now give the parameters used in the three-body problem. We set h’/M= 41.47 

MeV -fm2. The two-particle binding energy E = 2.2267 MeV and the range 
parameter p = 1.44401 fm-i are chosen so that the Yamaguchi potential will approx- 
imately describe low-energy neutron-proton scattering in the S-wave spin-l channel. 
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For a system of identical bosons the three-body problem gives rise to two bound 
states; a ground state with energy b, = 25.427 MeV and a second bound state with 
energy b2 = 2.379 MeV. The presence of two bound states gives some flexibility in the 
choice of Sturmian functions. We label the solution obtained using Sturmians 
evaluated at b = b, by (A) and at b = b, by (B). 

In spite of the fact that we do not expect a pointwise agreement between Tm and T, 
it is still interesting to see a numerical comparison between the two functions. For 
this comparison we have obtained a reference solution to the three-body amplitude by 
solving Eq. (2.1 j using the Padi method [ 181. At a three-body scattering energy 
E = 4e we use a [6,6] Pade approximant. In this approximation the on-shell tsan- 
sition amplitude T is converged to better than one part in 105. In order to check that 
our reference solution is correct a comparison is made with the reference solution 
used by Fonseca et al. [7], where agreement is found for the phase shift, 6, and 
inelasticity, 17, over the range of energies considered by them. A further check is 
provided by comparing our reference solution against a solution obtained from th.e 
Doleschall [ 191 code. 

We now describe the numerical procedure for evaluating integrals over the spline 
functions. In all our calculations the knots are spaced uniformly on the interva! 
[-I, +1 ] with mesh spacing h, = 2/(n - 1). The moment integrals in Eq. (4.6) are 
evaluated by using a standard Gauss-Legendre quadrature formula. The actual 
moments are calculated over the interval [xi, x~,,] and summed. An eight-point 
quadrature is used to integrate over smooth integrands, while for integrands 
containing logirithmic singularities we again split up the region of integration and 
evaluate the integrals with a 24-point quadrature formula. 

Our first numerical results concern the eigenvalues K, of the Sturmian functions 
defined by the solution of Eq. (3.14). Table I shows the largest approximate eigeri- 
values obtained using the spline-Galerkin method described in Appendix B. An 
indication of how accurately the eigenvalues are calculated in the spline appros- 
imation is seen by comparing solutions with 24 and 30 spline basis functions. In our 
numerical calculations of the Sturmian expansion the eigenvalues are ordered in 
absolute magnitude, i.e., ]K, + , / < 1 K, /, ,D = 1. . . . . fn - 1. (No degenerate eigenvalues 
were found.) 

Next we give our numerical results for the scattering sector below three-body 
breakup threshold. In this energy region the three-body amplitude does not contain 
logarithmic singularities and here we may expect that a pointwise agreement between 
r, and T is possible. Table II shows the phase shift, 6, at a scattering energy 
E = -0.2&, for several values of m. To obtain these results we have used 24 spline 
basis functions. As we increase the number of Sturmian expansion terms the phase 
shift for both choices (A) and (B) approach the Padi result. We look at the LZ-norm 
to test for convergence of the half-shell function T,(p, k: E + is>. We define the norm 
//T/~2 as 

II T/I, = (.i,y / T(p, k; E + iO)l’ p2 dp) I’*. (5.3) 
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TABLE I 

Approximate Largest Eigenvalues K, of the Sturmian Functions 
Evaluated with 24 and 30 Spline Basis Functions 

(A) (B) 

24 30 24 30 

O.lOO( 1) 
0.255 
0.817(-l) 
0.287(-l) 
0.103(-l) 
0.357(-2) 
0.115(-2) 
0.337(-3) 
0.939(-4 j 
0.305(-4) 

-0.46 I(-5) 
-0.123(-2) 
-0.159(-2) 

O.lOO( 1) 
0.255 
0.817(-l) 
0.287(-l) 
0.103(-l) 
0.357(-2) 
0.117(-2) 
0.343(-3) 
0.117(-3) 
0.996(-4) 

-0.375(-4) 
-0.150(-2) 
-0.164(-2) 

0.385(1 j 
0.100(l) 
0.350 
0.141 
0.611(-l) 
0.275(-l) 
0.126(-l) 
0.570(-2) 
0.255(-2) 
O.l lO(-2) 

-0.48 1(-6) 
-0.117(-2) 
-0.155(-2) 

0.385(l) 
0.100(l) 
0.350 
0.141 
0.611(-l) 
0.275(-l) 
0.126(-l) 
0.570(-2) 
0.255(-2) 
O.lll(-2) 

-0.221(-4) 
-0.145(-2) 
-0.161(-2) 

Table III shows the L2-norm of the error function 11 T,,, - Tl12/11 T/l2 for several 
Sturmian functions m and spline basis functions IZ + 2. For the values of m shown in 
Table III we find a stable solution with about 16 spline basis functions. As the 
number of Sturmian expansion terms is increased the approximation T,,, again 
approaches the Padi result. For a given nz the choice (B) gives better agreement than 
choice (A). This is probably because the second bound state pole dominates the low- 
energy scattering behaviour. 

Next we consider scattering above the breakup threshold. Here, because the 
breakup channel has opened up, the phase shift, 6(k), is complex. The amount of 
absorpion into the breakup channel is measured by an inelasticity parameter 

TABLE II 

Solution for m Expansion Terms at Energy E = -0.28 

M (A) W 

2 165.5 189.5 
4 210.0 215.0 
6 212.0 217.6 
8 212.5 218.3 

Pade 219.0 
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TABLE III 

LZ-Norm of the Error Function 11 I, - ~~I,/~1 Tl1 
for m Expansion Terms at Energy E = -0.2~ 

(A) rBj 

,?I II + 2 8 16 24 8 16 24 

2 0.974 0.975 0.975 0.563 0.564 0.564 

4 0.139 0.165 0.167 0.087 0.093 0.094 

6 0.038 0.138 0.143 0.027 0.029 9.029 

8 0.022 0.120 0.122 0.013 0.014 9.01 I 

q = exp[-2 Imag(6)]. A unitarity constraint on this parameter is that r] < 1. In the 
case of the separable expansion this unitarity constraint may not be satisfied because 
the operator U, defined by Eq. (2.2) does not contain the correct three-particle cut. 

Table IV shows the real part of 6, and ?I, at a scattering energy E = 4s. For these 
results we used 30 spline basis functions. Our results show that even with m = 6 the 
separable expansion solution can still be far from the correct three-body solution. 
This result is not surprising in view of the above comments. 

In general our results for choice (B) agree with those found by Fonseca ei ai. (7 j. 
The only discrepancy occurs for m = 6 at energies above breakup threshold. Here we 
find a smaller value for the real part of the phase shift. 

Table V shows the L2-norm of the error function // T, - T//2/J/ T/i2 for values of m 
up to m = 8. Again we show results for several choices of the spline basis functions 
n + 2. In the L2-norm, choice (A) approaches the Pade result, but choice (B) shows 
no such convergence. Indeed, choice (B) gives a worse result as the number of 
expansion terms is increased. 

TABLE IV 

Solution for 111 Expansion Terms at Energy E = 4~ 

tn 

2 

4 

6 

Padk 

(A) (B) 

Real (6) Rea: (6) 
(“1 rl (“J v 

151.4 1.52 109.8 11.9 
135.9 2.43 155.2 1l.i 
42.1 0.26 38.2 16.3 

169.3 0.813 
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TABLE V 

LZ-Norm of the Error Function l/r, - T112/11 TI/? 
for m Expansion Terms at Energy E = 4~ 

(A) (B) 

m n+2 20 24 30 20 24 30 

1 1.235 1.235 1.235 3.18 3.18 3.18 
2 0.841 0.84 1 0.841 5.42 5.42 5.42 
3 0.979 0.979 0.979 4.86 4.86 4.86 
4 0.953 0.953 0.953 7.20 7.18 7.17 
5 0.786 0.788 0.788 10.48 10.48 10.45 
6 0.632 0.632 0.632 17.83 17.66 17.87 
7 0.673 0.585 0.662 29.50 25.92 26.59 
8 0.520 0.652 0.596 26.89 38.3 1 32.92 

Of more practical interest in four-body calculations is the momentum structure of 
the expansion function T,n. Figure 1 illustrates the half-shell amplitude, T(p, k; 
E + iO), at an energy E = 4s: this function has a cusp at p = fi = 0.535 fm-‘. 
Figure 2 shows the results for choice (A) using m = 6 terms of the expansion, and 
Figure 3 shows the corresponding result for choice (B). 

FIG. 1. Converged solution of the Pad& method at an energy E = 4~. Continuous and broken curves 
denote the real and imaginary parts of the half-shell transition amplitude. 
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FIG. 2. Separable expansion solution with m = 6 at an energy E = 4~. Sturmian choice (A). G’u~:~es 
are labelled the same as in Fig. 1. 
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FIG. 3. Same as in Fig. 2 but with the Sturmain choice (5). 
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Both choices (A) and (B) display the cusp at p = 0.535 fin-‘. However, choice (B) 
leads to a result having large oscillations along the p-variable. Note that the scale of 
Figure 3 is different from that used in the previous two figures. The origin of these 
oscillations is unclear, but since the idea is to use the separable expansion in the 
kernel of integral equations for four-body scattering, such large oscillations are an 
undesirable feature. In this case it would seem that the result (A) may prove a better 
choice. Here the approximation T,,, reproduces at least the gross features of the half- 
shell three-body amplitude. 

To summarize, we have found good pointwise agreement between the separable 
expansion and the three-body amplitude at energies below the breakup threshold, 
whereas above the breakup threshold this agreement is poor. Because no pointwise 
agreement between T, and T is possible above the breakup threshold we cannot 
conclude that the expansion is justified in this energy region. Nevertheless, in a 
numerical treatment of four-body scattering the expansion function T,,, is convoluted 
with other functions and here it is hoped that the approximation will prove useful. An 
application of this approach to four-body calculations is currently under 
investigation. 

APPENDIXA: TWO-PARTICLE SOLUTION AND THE ~-FUNCTION 

The s-wave projection of the off-energy-shell two-particle amplitude t(q, q’; z j 
satisfies the integral equation 

Q”, 4’; z), (A-1) 
where q is the magnitude of the relative momentum between the two particles and z is 
a complex energy. 

For a Yamaguchi potential [ 137 

t’(q,q’)=~(q2+p2)-1(q’2+p2)-1, 64.2) 

where A and /I are a strength and range parameter, the solution to Eq. (A.l) can be 
written 

t(cA 4’; z> = g(q) d(z) gm (A-3) 

Here the two-particle vertex function g(q) is given by 

g(q) = C(q’ +P’)- I5 (A4 

where C is chosen to normalize the bound state wavefimction to unity. The constant 
C is defined by 

c = [Zc$(a + /?)“I “2, (A.5 ) 
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where u = v/e, and E is the two-particle binding energy. The d-function is given bar 

44=c-2 
[ 
+++jr (q~+;~)~q2~z) 

A bound state pole at d(--E) gives J = -2p(p + ~1)‘. 

APPENDIX B: GALERKIN METHOD FOR SOLVING EQ. (3.14) 

Consider the function 

The Galerkin method supposes that we have defined on CL-l, 1 ] the usual inner 
product 

!,B.Z) 

We now seek the coefficients {ui; i = O,.... n + 1 i by solving the system of linear 
equations 

(r, Bnj) = O, 

After rearrangement Eq. (B.3) reads 

j = o,..., n + I. (B.3) 

??+I 
-K ’ uj = 5 [(II& Bnj)] --I (U(4) D(--6) Bnk, Bnj) Uk. (B-4) 

j,k=O 

In general there is a sequence of n + 2 numbers {K,; i = O,..., n + 1) that yield a 
solution to Eq. (B.4). Given that n > rn - 1, we are interested in the coefficients 
(a8,i;i=0 ,..., n+ l;p= l,..., m) corresponding to the m largest eigenvalues 
(K, ;,u = l,..., m). These coefficients are used to construct the spline functions of 
Eq. (4.2). 
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